
Requirements 1

Cohort 1, Group 6

Group Members:

Hussain Alhabib

EllenMatthews

Minnie Poon

Jason Ruan

Daniel Smith

Owen Smith



Eliciting our requirements

To facilitate the implementation of our project, we elicited requirements directly from our client via a

20-minute in-person interview. The interview, which was recorded and conducted by two group

members, followed an interview schedule that had been collaboratively worked on by all team

members.

This structured approach to the first client interview allowed us to generate a comprehensive

document containing the client’s answers to over 20 questions, which helped assist the team later on

when producing the statement of requirements and respective referencing system.

Presenting our requirements

In the following group meeting, we began to interpret the client’s responses and produce our

requirement referencing system. After researching and discussing best practices in requirements

engineering as a group, particularly in Ian Summerville’s Software Engineering 10th Edition, we

decided to present the requirements in a tabular format, splitting them into four tables based on the

previously established categories. Each table was formatted with columns for the requirement ID,

description, priority, requirement link, and current status.

We considered several other formats for the referencing system, including Natural Language,

Structured, and Use Case (UML) specifications. However, we found a Natural Language specification

lacked the clarity and detail needed for our primary stakeholders, despite being accessible for wider

less-technical audiences. The Structured specification was too complex given our project’s scope, and

while a UML specification seemed useful especially due to its more visual aspects it seemed

redundant as our architecture section would already include graphical elements. Ultimately, we felt

as a team that the tabular format with an Agile-inspired approach, that prioritised requirements

based on importance, best suited our needs, enabling us to collectively determine the order and

focus of requirement implementation.

Negotiating our requirements

To ensure the project aligned with the client’s vision, we shared drafts of the requirements document

to encourage feedback and revisions. This approach enabled us to refine the requirements with the

client’s input and approval, which ensured that our understanding and implementation of the game

matched the client’s expectations. After acting on feedback, we emailed the client our final draft of

the requirements, which they approved before we proceeded with designing our requirements

referencing system.



Our Single Statement of Need

We will design a game called UniSim that allows players to manage a university campus by placing

and upgrading buildings, with success metrics for student satisfaction and university income while

navigating building restrictions and random events within a 5-minute gameplay session.

An Introduction to Our Requirement Categories

We defined our initial client questions and their respective requirements according to the following

four categories:

1. User Requirements describe the main actions and experiences that users should be able to

experience during gameplay. These should avoid using technical jargon and be accessible to

everyone regardless of their technical skills.

2. System Requirements define how the system will meet the user’s needs. These include

detailed, often technical, descriptions of the games functionality and services required for

gameplay. Multiple system requirements can be written to fulfil a single user requirement.

3. Non-Functional Requirements focus on the game’s attributes and qualities, and define how

well the game should perform regarding usability, reliability, and performance.

4. Constraint Requirements address limitations or restrictions that may be imposed on the

game, such as hardware limitations and any relevant legal regulations we must adhere to.

Our Requirements Referencing System

Each requirement is assigned a unique ID to ensure traceability and consistency across our

documentation. Initially, we used numerical IDs, but switched to more meaningful names to improve

readability and clarity, making it easier to reference requirements in other documents. This ID system

also helps us link related requirements, such as ensuring each system requirement is tied to a

corresponding user requirement. A dedicated column in each table lists related requirement IDs,

which further helps in visualising how different requirements interact and impact one another.

User Requirements (URs)

ID Description Priority SR Link Status

UR_BASIC_B
UILDINGS

The player must be able to place at least one type
of each building type; a place to learn, a place to
sleep, a place to eat, and a recreational activity.

Essential SR_PLACE_B
UILDINGS

APPROVED

UR_TIME The game should last for a maximum of 5
real-world minutes.

Essential SR_TIME APPROVED

UR_BUILDIN
G_COUNTER

The game should track and display the number of
each building type (e.g. sleep, eat, learn,
recreational) placed by the player.

Essential SR_BUILDIN
G_COUNTE
R

APPROVED

UR_SCORE Players should have a way to measure their
success in the game via various metrics such as
satisfaction and environmental impact.

High SR_METRIC
S,
SR_SATISFA
CTION

APPROVED



UR_EASE_OF
_USE

There should be an intuitive interface with visual
indicators for performance (e.g. student
satisfaction, building usage).

High SR_METRIC
S

APPROVED

UR_BUILDIN
G_LIMITS

The player should be restricted from placing
buildings in certain areas of the map (e.g. over a
lake, road, or other buildings).

High SR_BUILDIN
G_RESTRICT
IONS

APPROVED

UR_EVENTS The game will include at least three core events
that affect the player’s experience and require
player interaction.

High SR_EVENTS APPROVED

UR_DEPLOY
MENT

The game should be accessible and run smoothly
on standard desktops and laptops across all major
operating systems.

High SR_DEPLOY
MENT,
NFR_RUNS_
WELL

APPROVED

UR_TIPS The game should include tips and guidance to
help players understand how to play the game,
such as tutorials or hints.

Medium SR_TIPS,
NFR_ACCES
SIBLE

APPROVED

UR_SETTING
S

The game should include settings to allow the
user to adjust in-game sound levels if sound assets
are implemented.

Medium SR_SETTING
S

APPROVED

System Requirements (SRs)

ID Description Priority SR Link Status

SR_PLACE_B
UILDINGS

Players should be able to place, upgrade, and
demolish buildings within the game.

Essential UR_BASIC_B
UILDINGS

APPROVED

SR_TIME Time should be tracked and shown within
gameplay, lasting for a maximum of 5 real-world
minutes.

Essential UR_TIME APPROVED

SR_BUILDIN
G_COUNTER

The game should count and display the number of
each building type placed by the player.

Essential UR_BUILDIN
G_COUNTE
R

APPROVED

SR_EVENTS The game should include core events (e.g. strikes
or fires) that require player action and occur
randomly during the game.

High UR_EVENTS APPROVED

SR_BUILDIN
G_RESTRICTI
ONS

The map should restrict building placement based
on rules (e.g. no buildings over lakes/rivers or on
existing paths).

High UR_BUILDIN
G_LIMITS

APPROVED

SR_METRICS Satisfaction metrics should be visible to players at
all times during gameplay.

High UR_SCORE,
UR_EASE_O
F_USE

APPROVED

SR_DEPLOY
MENT

The game should run smoothly on desktops and
laptops across all major operating systems
optimised for various hardware.

High UR_DEPLOY
MENT

APPROVED



SR_SATISFAC
TION

Building proximity and events should affect pla-
yer satisfaction, which should be visible in-game.

Medium UR_SCORE APPROVED

SR_BUILDIN
G_EFFECTS

Buildings should have different impacts on player
satisfaction based on their type and position in
relation to other buildings.

Medium UR_SCORE APPROVED

SR_SETTING
S

The game should include sound settings for
adjusting in-game sound levels, if such assets are
included.

Medium UR_SETTIN
GS

APPROVED

SR_DIFFICUL
TY

The game should offer various difficulty levels to
accommodate a broad audience but should
include a baseline level for everyone.

Low UR_TIPS APPROVED

Non-Functional Requirements (NFRs)

ID Description Priority SR Link Status

NFR_RUNS_
WELL

The game should run smoothly on all laptops and
desktops on major operating systems.

High UR_DEPLOY
MENT

APPROVED

NFR_NO_DE
LAY

The gameplay experience should be smooth, with
minimal delays or lag during player interactions.

High UR_DEPLOY
MENT

APPROVED

NFR_ACCESS
IBLE

The game should be accessible to as wide an
audience as possible, accommodating players with
different needs.

High UR_TIPS APPROVED

NFR_GRAPHI
CS

The graphics should reflect the selected
environment, maintaining visual cohesion
throughout the game.

High UR_BASIC_B
UILDINGS

APPROVED

NFR_LICENS
ES

The game should use appropriately licensed
sounds and music assets to create an enjoyable
in–game experience.

Medium UR_SETTIN
GS

APPROVED

NFR_BACKG
ROUND

The game should include background elements
(e.g. students walking) to make the map appear
more dynamic and engaging.

Low UR_BASIC_B
UILDINGS

APPROVED

Constraint Requirements (CRs)

ID Description Priority SR Link Status

CR_LOCAL The game should run locally on a device without
needing an internet connection.

High UR_DEPLOY
MENT

APPROVED

CR_LOW_SP
EC

The game should be optimised to run on low-spec
devices, ensuring it is accessible to all players.

High UR_DEPLOY
MENT

APPROVED

CR_LEGAL The game should be legally compliant, using
appropriately licensed and attributed assets.

High UR_SETTIN
GS, UR_
BASIC
_BUILDINGS

APPROVED


