
Method Selection and Planning 1

Cohort 1, Group 6

Group Members:

Hussain Alhabib

EllenMatthews

Minnie Poon

Jason Ruan

Daniel Smith

Owen Smith



Software Engineering Methodologies

For our project, we selected the Agile methodology to support an iterative, flexible, and collaborative

development process. Below, we outline our reasoning and the alternatives considered.

Agile

Agile’s adaptability and iterative nature make it ideal for UniSim. It allows for incremental

development with continuous client feedback, which is crucial as requirements evolve based on

testing. Agile promotes strong team collaboration and ensures our alignment with deliverables.

Regular review will help us adjust priorities quickly, keeping the project on track and ensuring the

clients needs are met.

Challenges

Its frequent change requests could overwhelm the team, particularly with our small team and tight

timeline. Therefore, we must manage the scope carefully to ensure steady progress.

Waterfall

We also considered Waterfall - a traditional methodology with a structured, sequential process

(design, development, testing). It works well for projects with fixed requirements. However,

Waterfall’s rigidity and lack of flexibility make it unsuitable for UniSim’s evolving features, requiring

frequent iterations. Also, testing only occurs after development which risks bugs becoming deeply

embedded. Therefore, with a limited timeline and a small team, Waterfall isn’t suitable for our

needs.

Collaboration & Documentation Tools

To support our chosen methodology, we use Slack for communication and Google Drive for file

management. Below is our reasoning and the alternative tools we considered.

Slack

Slack is our primary communication tool. It enables real-time messaging, file sharing, and integrates

with relevant tools like Google Drive and GitHub. Slack’s channel-based structure helps organise

discussions by task or deliverable which is ideal for Agile workflows. Its ease of use supports the

fast-paced and collaborative nature of our project.

Challenges

Slack’s free plan limits app integrations and message history, but these restrictions are manageable

given our team’s size and the project’s short timeline.

Google Drive

Google Drive serves as our central file management platform. It allows real-time collaboration and

integrates with other Google Workspace tools, enabling smooth document sharing and version

control.



Challenges

The team’s Google Drive can become cluttered due to the many contributors, but this is manageable

through proper file management (administered via our Secretary).

Microsoft Workspace

We considered the Microsoft Suite (One Drive, Teams, and Microsoft 365), but the free plan limits

features and our team is more familiar with Google Drive and Slack. Also, Slack offers more

professional communication features compared to Microsoft Teams.

Development Tools

We selected IntelliJ IDEA as our IDE, LibGDX for game development, and GitHub for code

management. Below is why we chose these tools and the alternatives we considered.

Chosen Tool Challenges Alternatives Considered

IDEs For Java 17, we chose

IntelliJ IDEA for its robust

support for Java

development, including

intelligent code completion,

debugging, and GitHub

integration.

IntelliJ is feature-rich,

which can be

resource-heavy on

lower-end systems, but this

is unlikely to be a major

issue for our project.

We considered Visual

Studio Code, but it lacks

the dedicated Java tools of

IntelliJ, making it less

suitable for our needs.

Game
Development
Framework

We are using LibGDX for

UniSim. It is a flexible,

well-documented

framework ideal for

building 2D games,

supporting graphics, input

handling, and audio -

critical features for our

project.

LibGDX may be difficult for

beginners, and some

advanced features can take

longer to implement.

We considered Unity, but

its focus on 3D

development and use of C#

made it less suited for our

2D-focused game.

Additionally, our team is

more experienced with

LibGDX, which also offers

cross-platform capabilities.

Version Control We use GitHub for version

control, providing a

centralised repository for

code management. Its

branching and pull requests

enable parallel

development, preventing

conflicts. The version

history feature tracks

changes and supports code

reviews.

GitHub’s free plan limits

private repositories, and

while its interface is

user-friendly, some

advanced features require

learning.

We also considered

BitBucket, which offers

unlimited free private

repositories, but GitHub’s

larger use base, better

integration with tools like

Slack and GitHub Actions,

and stronger support make

it a better choice for our

project.



Team Roles & Organisation

As a team of 6, we adopted a deliverable-focused approach, in which each team member is assigned

as a Lead for one of the six project deliverables. This approach promotes ownership and

accountability, enabling each team member to focus on a deliverable aligned with their expertise or

interest. Each Deliverable Lead oversees the planning and completion of their respective deliverable

and also contributes to other roles and deliverables as needed to support the team’s progress.

To further support the team’s workflow and maintain efficiency, each team member has a secondary

role that addresses various operational needs within the project. Below is an overview of these roles:

1. Project Lead: Responsible for overseeing the project’s timeline and ensuring that all

deliverables stay on schedule as per the Gantt Chart. They check in on team members’

progress at the beginning of each meeting and help maintain focus on tasks.

2. Head Developer: Manages code production, coordinates feature integration, and establishes

coding standards and formatting. They ensure that development aligns with the team’s

chosen methodology and oversees the technical aspects of the project.

3. Quality Assurance: Handles testing to ensure the product meets agreed-upon requirements,

assists the Head Developer with identifying and fixing bugs, and ensures the quality of

features within the product.

4. Report Editor: Oversee the finalisation of all written reports and deliverable documents,

ensuring they meet the standards outlined in the assessment brief.

5. Secretary: This role is divided into two different positions:

a. Meeting Secretary: Manages meeting documentation, prepares agenda, and takes

notes. They also organise the team’s working directory to ensure documents are

up-to-date and easy to find.

b. Logistics and Communications Secretary: Coordinates meeting logistics, including

booking rooms and arranging schedules, and manages communication with the

client by relaying project updates and feedback.

Our Team

Hussain Alhabib
Risk Assessment and

Mitigation Lead
Quality Assurance

Ellen Matthews
Requirements Lead
Meetings Secretary

Minnie Poon
Method Selection and

Planning Lead
Report Editor

Jason Ruan
Architecture Lead

Project Lead

Daniel Smith
Website Lead

Logistics and Communications
Secretary

Owen Smith
Implementation Lead

Head Developer



Our Systematic Plan

To efficiently manage the team’s tasks and track progress, we created a Gantt Chart in Google Sheets

with additional features to support collaboration and ensure task transparency and ownership.

The Gantt chart is organised into seven main sections: one for general project tasks and six for each

project deliverable. Within each section, tasks outline the objectives for each deliverable - detailing

their estimated duration, status, weight (in marks and pages), assigned team members, planned start

and end dates, relevant files, and dependencies.

Initially, each task was assigned a provisional start and end date, along with an estimated duration to

help provide a clear timeline for the project - providing clarity to team members. Once tasks began,

their timings were updated, and team members were assigned to oversee their completion. Task

dependencies were incorporated to ensure an efficient workflow for the project. For example, most

architecture tasks were dependent on requirement tasks, and some website tasks required the

completion of certain architecture and implementation tasks.

As the program’s development began, we opted to use GitHub Actions and Projects to manage

coding tasks instead of adding them directly to the Gantt Chart. This allowed us to streamline feature

implementation and prioritise tasks according to our Agile Methodology. Each task in GitHub was

categorised by priority, type, and game area.

To maintain transparency, weekly screenshots of our project’s progress have been added to our

team’s website [https://uoy-team-six.github.io/] under the “Weekly Screenshots” tab, where the

final version of our Gantt Chart can also be viewed.

Key Evolutions and Adjustments to the Gantt Chart:

- Utilisation of GitHub for Programming Task Management: We added programming tasks to

GitHub, reducing potential clutter on the Gantt Chart and ensuring we focus on the priority

of coding tasks essential for meeting the project’s requirements.

- Addition of Task: In Week 4, we added “2.5 Negotiate requirements with client” to the

Requirements section. This change led to us adjusting the forecasted completion dates for

related tasks as we incorporated client feedback and refined the project’s requirements.

An Excerpt of Our GitHub Issues:

Each task (issue) in GitHub was

categorised by priority (high,

medium, or low), area (mainly

“game”), and category

(enhancement or bug).

https://uoy-team-six.github.io/


Our Gantt Chart

Below is the final version of our Gantt Chart, reflecting the completion of our project.

An electronic copy of this Gantt Chart is available on the website [https://uoy-team-six.github.io/] under the “Download” tab.

https://uoy-team-six.github.io/

