
Architecture 1

Cohort 1, Group 6

Group Members:

Hussain Alhabib

EllenMatthews

Minnie Poon

Jason Ruan

Daniel Smith

Owen Smith



Introduction and Overview of Tools Used

This report outlines the architecture and design of our team’s program, UniSim. Our architecture

prioritised modularity, scalability, and maintainability, to ensure that our design supports the Agile

framework. This document provides an overview of the final architecture, as well as a summary of its

evolution since the initial designs, giving stakeholders insight into key architectural changes and

improvements over time.

To achieve UniSim’s requirements, we selected Java and LibGDX as our core technologies due to their

strong compatibility with cross-platform game development (further justification details in Plan1).

For the illustration of our architecture, we use PlantUML to generate our UML diagrams. PlantUML’s

text-based format offers two primary benefits: ease of updates to accommodate iterative design

changes and version control integration, which allows our team to track architectural modifications

alongside changes to our code. These features are especially important given our evolving project

requirements, enabling traceability back to specific requirements.

We did consider alternative tools, such as LucidChart, which offers an intuitive, drag-and-drop

interface and advanced collaboration options. However, we chose PlantUML due to its enhanced

cost-effective features, and compatibility with our version control needs, which ensures an efficient

approach to documenting our architecture as it develops.

PlantUML also supports the effective organisation of project requirements through text based

linking. By linking User Requirements with System and Non-Functional Requirements directly in the

code, PlantUML enables us to maintain a clear and traceable representation of how each

architectural component fulfils user requirements and follows our implementation.

Our Architectural Diagrams and Structure

Textures Module

The Textures module manages all visual assets required for gameplay, such as maps, building icons,

and other UI elements. It includes:

● gameMap: which is responsible for loading and managing the game’s map through the

loadMap() function.



● BuildingsToolBar and BuildingStatsBox: UI elements which allow users to view and manage

buildings, and also see the number of buildings placed on the map.

● ScoreBar: which informs the user of their current score to help them measure their current

success in the game.

Components Module

The Components module is a core component for game handling. It includes central gameplay

elements like buildings, timing, and scoring. Key classes include:

● ScoresSatisfaction: manages the scoring system and measures the satisfaction levels during

gameplay, which provides data for the ScoreBar to show players their current progress.

● Events: facilitates the random events that can occur during gameplay, which helps enhance

the player’s experience.

● GameTime: tracks the in-game time, working with the GameTimeLeft class to inform the

player of their remaining gameplay time.

Screens Module

The Screens module manages the player's interaction and visual settings for the gameplay. Key

features include:

● GameScreen: supports in-game functionality like zooming, allowing the player to adjust their

gameplay screen view with the MaxZoomLevel setting.

● GameOverScreen: informs the player that their current gameplay session has ended.

Systems Module

The Systems module provides the logic and processes behind integral gameplay functions. Key

functionalities include:

● BuildingPlacement and Collision: manages the placement of buildings in-game, ensuring they

are placed correctly and that objects interact appropriately.

● eventsHappening: executes in-game events randomly as defined in the Events module.

The structure and modularity of this architecture easily allows for gameplay mechanics to be

extended or modified to support any new/additional requirements to be added.

Activity Diagram

To further illustrate our system’s behavioural architecture, we designed a UML Activity Diagram

showing the typical flow of gameplay from the player’s perspective. The diagram maps out the series

of actions a player might be able to take within the game, and how those actions interact with

various system components, such as scoring, building placement, and event triggers.

The Activity Diagram shows the following key actions:

● Start Game: The initial game setup, loading in of game assets, and starting of 5-minute

countdown.

● Building: A player interaction with the UI to place buildings on the map.

● Score Update: The ScoresSatisfaction class continuously updates the player’s score,

reflecting the actions the player’s take.

● Game Over: An event triggered by either running out of time, failing to meet the necessary

score threshold, or an interrupt in the running of the game.



This visualisation of the gameplay process helps clarify how the system’s components interact from a

player’s perspective, aligning the architectural structure with the actual user experience.

Evolution of Our Architecture

In the previous section, you saw the final version of our Architecture. This section details the iterative

development of UniSim’s architecture, showing the design changes and refinements made during the

project’s development.



All architecture images can be seen under their respective headings on the Website

[https://uoy-team-six.github.io] under the “Architecture” tab.

Iteration 1: Setup of Textures Module

In the initial iteration of our architecture, we prioritised implementing essential in-game features,

such as loading the game map. As such, we created a “Textures” module, guided by the importance

of a scalable and maintainable structure. The design of this module ensures that future iterations of

our game could easily incorporate additional textures and assets.

The “Textures” module was constructed to manage the implementation related to textures e.g.

maps. To achieve this, we introduced a “GameMap” class within the module, which is responsible for

loading the game’s map efficiently. The class contains a “loadMap()” function which handles the

loading process.

Iteration 2: Introduction of Screens Module

For the second iteration of our architecture, we created a new module called “Screens”. Designed in

a similar way to our first module, it is easy to add new features to this module as new requirements

are proposed and implemented.

As previously discussed, the “Screens” module was designed with a purpose to provide flexibility in

managing the game’s display setting to enhance the player experience such as zooming in and out

and minimising or maximising the game screen. To do this, a “GameScreen” class was added to the

module which is used to specify the maximum zoom level with the MaxZoomLevel method.

Iteration 3: Adding Core Mechanics

In the third iteration of our architecture, we introduced the “Components” and “Systems” modules,

which are fundamental to implementing the game’s core mechanics. Designed with modularity and

scalability in mind, new components and systems can be easily added as the implementation

progresses.

In this iteration, we created the “GameTime” class as part of the “Components” module, which

represents the game’s time tracking feature. Paired with this is the “GameTimeLeft” class in the

“Systems” module, which is responsible for managing and updating the game’s time in real time.

Iteration 4: Building Placement and Collision Features

The fourth iteration of our architecture created core components to our modules. This included

adding the “Buildings” class to our “Components” module, and the “Collision” and

“BuildingPlacement” classes to our “Systems” module. This integration was efficient and

straightforward, showing the flexibility of our architecture and the efficient nature of our

collaborative development process.

These new classes work in tandem to manage building placement on the map and ensure there is a

suitable collision detection method within our implementation. “Collision” was made a standalone

class due to the significant number of potential objects that require collision handling.

https://uoy-team-six.github.io


Iteration 5: UI Enhancements

In the fifth iteration of our architecture, we focused on developing UniSim’s User Interface. We used

our existing “Assets” class within the “Textures” module to load in new UI features: the

“BuildingStatsBox” class and the “BuildingsToolBar” class.

The “BuildingStatsBox” class represents the number of buildings placed for each type by using the

function “loadBuildingCount()”. In parallel, the “BuildingsToolBar” class allows players to click on

certain icons to place corresponding buildings by using the “loadIcons()” function.

Iteration 6: Scoring Functionalities

For the sixth iteration of our architecture, we added more core game features. In particular, we

added a scoring system to track player performance. To do this, we created a new

“ScoresSatisfaction” class in the “Components” module, which is designed to work with a dedicated

measurement system that calculates and updates the score as the game progresses. Additionally, we

created a “ScoreBar” class in the “Textures” module to provide players with a visual representation

of their current score, making it easier to track progress and improving the gameplay experience for

players.

Final Iteration/Current Architecture

In our final architecture iteration, we created one more core functionality - the events system. This

involved adding the “Events” class to the “Components” module, and the “eventsHappening” class to

the “Systems” module. These additions allow different types of events to occur throughout the

game, each with different effects that affect the gameplay in different ways. We also implemented a

gameover screen by adding the “GameOverScreen” class to the “Screens” module, which is shown

when players fail the game.

Additionally, we revisited and refined our “BuildingStatsBox” class to ensure that it can accurately

track and display the type and quantity of buildings placed within the game.

By adhering to the principles of modularity, scalability, and traceability throughout our design and

implementation, we have developed an architecture that meets our specified requirements

effectively. Our approach also allows for future functionalities to be added efficiently while

maintaining a clear and structured system.

Note this iteration refers to the same diagrams listed under “Our Architectural Diagrams and

Structure” at the start of this document.

Justification of Our Architecture

As previously mentioned, UniSim’s architecture was designed with a focus on modularity, ensuring

each component has a well-defined role. This modular approach simplifies both the development

and maintenance of the architecture, as each module can be updated independently without

impacting the rest of the system. This structure supports easy integration of future features and

changes, as evidenced by the efficient evolution of our architecture through several iterations of

development.



We also ensured direct traceability from the architecture to the project requirements - aligning each

design decision with specific client needs. For example, the UR_TIME_TRACKING requirement is

implemented through the GameTime class, which manages the game’s five-minute timer (as defined

in SR_TIME). Similarly, UR_BUILDING_LIMITS is enforced by the BuildingPlacement class, which

prevents overlapping building placements, aligning with SR_BUILDING_RESTRICTIONS.

By organising the game’s architecture into distinct modules: Textures, Components, Systems, and

Screens - we were able to separate functionalities and implementation effectively. Each module has a

clear purpose, as defined in the “Our Architectural Diagrams and Structure” section.

The modularity also enhances both maintainability and scalability, allowing for easy updates to

assets, gameplay features, or UI elements. For example, the BuildingsToolBar and ScoreBar UI

elements are contained within the “Textures” module which makes it easy to modify them as new

building types or scoring systems are added to the game.

Requirements Traceability

UniSim’s architecture was designed with a heightened focus on requirements traceability, to ensure

that every core functionality aligns with the specified user and system requirements. Below are

examples of how the architecture addresses our key requirements:

1. UR_BASIC_BUILDINGS and SR_PLACE_BUILDINGS; these requirements were fulfilled through

the Buildings class and its related features, including BuildingPlacement and Collision (which

also meets the requirements of UR_BUILDING_LIMITS and SR_BUILDING_RESTRICTIONS).

2. UR_TIME_TRACKING; we implemented this feature using the GameTime component paired

with the GameTimeLeft feature which allows for game time to be tracked and updated,

fulfilling the requirement of SR_TIME.

3. UR_BUILDING_COUNTER and SR_BUILDING_COUNTER; these are met by the

BuildingsStatBox class which is located in the Textures module which tracks the number of

placed buildings, and the Buildings module which when connected to the class can efficiently

update the game’s building counter.

4. UR_SCORE and SR_METRICS; the ScoreSatisfaction and ScoreBar classes help display a visual

score tracker allowing players to easily monitor their performance.

5. UR_EVENTS; we developed an Events component to define the varying event types and their

effects on gameplay - also fulfilling SR_EVENTS. The eventsHappening class is also linked to

this by triggering events randomly during gameplay.

Overall, as you can see our chosen architectural design allows for easy updates and changes to

accommodate new requirements or features, ensuring UniSim continues to meet both its user and

system requirements.


