
Requirements
ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan

--

This document has been modified for Assessment 2 to reflect the changes made by ENG1

Team 6:

● Hussain Alhabib

● Ellen Matthews

● Minnie Poon

● Jason Ruan

● Daniel Smith

● Owen Smith

--

Introduction to Requirements

To begin eliciting the requirements we first analysed the product brief, which provided us
with some initial fundamental requirements of the game. We noted down any remaining
questions we had around the product brief, and created a list of important questions to ask
the stakeholder, ordered by priority. Additionally we did some further research into sensible
system requirements for the game (e.g system specs and supported OS’s). From this, we
found that devices with at least 2GB of RAM and 2 or more CPU cores should be sufficient
for a simple 2D game.

Next we set up a meeting with the client to discuss the questions we had curated. In doing
so we gathered and negotiated new requirements and cleared up any ambiguity in the
requirements we had already gathered. The client also noted that we had a lot of freedom to
decide how some of the lower level design elements of the game worked, along with the
style/theme of the game. This reduced the number of requirements relating to the style and
design of the game.

During the meeting we also worked with the client to come up with a SSON which will help
the whole team understand the broad concept of the game.

Single Statement of Need (SSON)
The system will consist of a campus planning game, which allows the user to place
buildings, and simulates an in-game time of 3 years within 5 minutes of real world time.

--OUR EDITS---

“We will design a game called UniSim that allows players to manage a university campus by placing

and upgrading buildings, with success metrics for student satisfaction and university income while

navigating building restrictions and random events within a 5-minute gameplay session.”

--

After collecting the requirements we needed a way to present them in a way that was easy to
edit and reference. To accomplish this we created tables to house the requirements. Firstly
we made a user requirements table which holds all the requirements that were obtained
from the meeting with the client. User requirements describe the main actions and experiences

that the users should be able to experience during gameplay. These user requirements were
written in a non-technical way which allows for anyone involved in the project to understand
their meaning and have a corresponding priority of either “Essential”, “High”, “Medium” and

“Low” - this provides a clear indication of the priority assigned to a given requirement.

Next we made 3 tables for system requirements: functional, non-functional and constraint.
The functional and non-functional requirements were determined by examining the user
requirements and then creating descriptions of how the system will satisfy these
requirements. Functional defines how the system will meet the users needs. These include

detailed, often technical descriptions of the games functionality and services required for

gameplay, and non-functional focuses on the game’s attributes and qualities, and defines how

well the game should perform regarding usability, reliability and performance. The constraint

requirements were determined from the initial research we did into sensible system
requirements before the meeting.

Every requirement in each table has a description of what the requirement is and also a

unique ID to ensure traceability and consistency across documentation. The ID is a meaningful
name (for example UR_BUILDING_COUNTER) which is prefixed with either: UR, FR, NFR, or
CR which correspond to: User, Functional, Non-functional and Constraint requirement. This
allows for easy identification of what type of requirement the ID corresponds to but also
allows for easy referencing in other areas of the project. A dedicated column in each table lists

related requirement IDs, which further helps visualising how different requirements interact and

impact one another.

--OUR EDITS---

User Requirements (URs)

ID Description Priority

UR_BASIC_BUILDINGS The user shall have a number of different building types to choose from; a place to learn, a place to sleep, a place
to eat, and a reactionary activity. Users may also be able to upgrade and demolish their buildings.

Essential

UR_TIME The game should simulate a time of around 3 years within a time frame of 5 minutes. And have a counter on the
screen that displays how much time is left. When the timer stops the game should end.

Essential

UR_BUILDING_
COUNTER

The game should track and display the number of each building type (e.g. sleep, eat, learn, recreational) placed by
the player.

Essential

UR_SCORE Users should have a way to measure their success in the game via various metrics such as satisfaction and
university income. The user can increase or decrease the satisfaction levels of the students in a variety of ways (for
example having entertainment and food buildings near accommodation, and reacting to events appropriately).

High

UR_EASE_OF_USE The game should be intuitive to play at the fundamental level, for example, it should be straightforward to
select/place buildings and deal with events. The game should stay intuitive for users with no gaming experience.
Also the game should react to the users inputs.

High

UR_BUILDING_LIMITS The player should be restricted from placing buildings in certain areas of the map (e.g. over a lake, road, or other
buildings).

High

UR_EVENTS The game will include at least three core events that affect the user’s experience. The user shall be able to interact
and react to events that occur during the course of the game, these depend on the difficulty setting chosen by the
user.

High

UR_DEPLOYMENT The game should be accessible and run smoothly on standard desktops and laptops across all major operating
systems. The game should perform well and provide a pleasant user experience.

High

UR_TIPS The game should include tips and guidance to help players understand how to play the game, such as tutorials or
hints.

Medium

UR_SETTINGS The game should include settings to allow the user to adjust in-game sound levels if sound assets are Medium

See the Change Report (Change2) for a full list of changes.

implemented.

UR_DIFFICULTY_
SETTINGS

The game may contain multiple difficulty settings that the user can choose from. These settings should affect
different parts of the game (for example increase the frequency and difficulty of events and change the amount of
money you start with). The default setting should be the easiest which helps with accessibility for new users.

Low

UR_MONEY The game may include an in-game currency system that is used to purchase buildings. The income rate of this
currency should increase accordingly with the student population.

Medium

UR_MAINTAINABILITY The game should be easily modified and maintained by future developers. High

UR_LEADERBOARD The game should display a leaderboard that tracks the top 5 scores of players within the same local game
session/instance.

High

UR_ACHIEVEMENTS The game should feature achievements, such as maintaining high satisfaction levels. They should modify the final
score and be displayed on the Game Over screen if unlocked.

High

System Requirements

Functional Requirements (FRs)

ID Description Link to URs

FR_BUILDINGS The game shall allow users to place/build and possibly upgrade buildings on the campus map. Players
should be able to demolish buildings. The game shall have at least one building of every type namely:
Educational, Recreational, Residential and Restaurant.

UR_BASIC_BUILDINGS

FR_TIMER The game should have a timer that is displayed at all times during gameplay, showing the remaining
time from the original 5 minutes.

UR_TIME

FR_BUILDING_
COUNTER

The game should display a counter at all times during gameplay that shows how many of each
building type have been placed in the world.

UR_BUILDING_
COUNTER

FR_EVENTS Events should occur throughout the game - these should come in 3 different types: positive (which
benefits the player), negative (which hinders the player) and neutral (which does not affect the

UR_EVENTS, UR_
DIFFICULTY_SETTINGS

See the Change Report (Change2) for a full list of changes.

game). These events will be set and occur at set times on the lowest difficulty but be randomised on
higher difficulties.

FR_OBSTACLES The map shall have preplaced obstacles that block the user from building on top of them. UR_BUILDING_LIMITS

FR_USER_INTERFACE The UI should display only important information to the user so that it is not overly complex and
overwhelming. Satisfaction metrics should be visible to players at all times during gameplay.
Interactive elements should react when clicked or moved (for example when a button is pressed its
colour changes or a sound is made).

UR_SCORE, UR_EASE_
OF_USE

FR_BUILDING_
EFFECTS

Buildings should have different impacts on player satisfaction based on their type and position in
relation to other buildings.

UR_SCORE

FR_BACKGROUND The game should include background elements (e.g. student walking) to make the map appear more
dynamic and engaging.

UR_BASIC_BUILDINGS

FR_SETTINGS The game should include sound settings for adjusting in-game sound levels, if such assets are
included.

UR_SETTINGS

FR_DIFFICULTY_
SELECTION

The game shall allow the user to select the difficulty of a new game. The default should be the
easiest setting.

UR_DIFFICULTY_
SETTINGS, UR_EASE_OF
_USE

FR_DIFFICULTY
_EFFECTS

The difficulty selected should affect the variety and frequency of events along with the amount of
money players receive at the start.

UR_DIFFICULTY_
SETTINGS

FR_MONEY Players should start with a predetermined amount of money based on difficulty and receive an
income which increases proportionally to the student population level.

UR_MONEY, UR_
DIFFICULTY_SETTINGS

FR_BUYING The game should allow users to spend their in-game money on purchasing and upgrading buildings
and never allow users to purchase or upgrade a building if they do not have enough in-game money.

UR_MONEY

FR_LEADERBOARD The game should maintain a session-specific leaderboard with the names and scores of the top 5
players during that instance. Players should be given the option to input their name at the end of
their game to appear on the leaderboard.

UR_LEADERBOARD,
UR_SCORE

See the Change Report (Change2) for a full list of changes.

FR_ACHIEVEMENTS_
SYSTEM

The game should track players progress and inform them when they earn an achievement. UR_ACHIEVEMENTS

FR_ACHIEVEMENTS_
EFFECT

Achievements should modify the final score based on their nature i.e. positively or negatively. If
unlocked, they should also be listed on the Game Over screen.

UR_ACHIEVEMENTS,
UR_SCORE

Non-Functional Requirements (NFRs)

ID Description Link to URs Fit Criteria

NFR_PERFORMANCE The game should run smoothly, without hitches at any point during
gameplay. This should apply on minimum spec machines.

UR_DEPLOYMENT The game should run 99% of
the time at at least 30FPS.

NFR_INTERACTIVE
ELEMENTS
REACTION

Interactive elements (for example buttons) should react quickly and
smoothly to user use. Preferably with some signal to the user like a
sound or colour change.

UR_DEPLOYMENT 99% of interactive elements
should respond within 1s of
interaction.

NFR_OPERABILITY The game should be easily playable and navigable by new players
and accessible to as wide an audience as possible, accommodating
players with different needs.

UR_EASE_OF_USE 95% of players should be able
to play the game for the first
time, with no more than 1 min
of tutorials.

NFR_IMMERSION The game should have sounds and graphics that fit the theme of the
game.

UR_EASE_OF_USE 80% of gameplay should have
sound assets. 85% of players
should agree assets enhance
the game.

NFR_LICENSE The game should use appropriately licensed sounds and music
assets to create an enjoyable in-game experience.

UR_SETTINGS 100% of assets should have
verified licenses.

NFR_DEPLOYMENT The game should run smoothly on desktops and laptops across all
major operating systems optimised for various hardware.

UR_DEPLOYMENT The game should maintain a
frame rate of at least 30 FPS
on 95% of systems that use
the game.

See the Change Report (Change2) for a full list of changes.

NFR_ERROR_
MESSAGES

Any errors or warnings generated by the game should be easy to
understand and not overly technical.

UR_MAINTAINABILITY During feedback and
gameplay, 90% of players
should find error messages
clear and easy to understand.

NFR_
DOCUMENTATION

The game should come with clear documentation that explains
what each part of the code does and how to modify it.

UR_MAINTAINABILITY 98% of the code's
functionalities should be
detailed in the doc.

NFR_END_OF_GAME The game should immediately end after the timer has expired. UR_TIME, UR_SCORE A “Game Over” message
should appear within 1 second
of the timer ending.

NFR_CODE_
MODULARITY

The code should be modular and easily extendable, without making
the program difficult to follow.

UR_MAINTAINABILITY 90% of functions should
remain under 50 lines long.

NFR_LEADERBOARD_
VISIBILITY

The leaderboard should be easy to understand, and able to be
accessed before or after their game.

UR_LEADERBOARD 95% of players should locate
and understand the
leaderboard within 5 seconds.

NFR_ACHIEVEMENTS
_NOTIFICATION

Achievement notifications should be clear, easy to understand, and
appear promptly once unlocked.

UR_ACHIEVEMENTS Achievement notifications
should appear within 2
seconds of being unlocked.

Constraint Requirements (CRs)

ID Description

CR_LOW_SPEC The game should be optimised to run on low-spec devices, ensuring it is accessible to all players.

See the Change Report (Change2) for a full list of changes.

	Introduction to Requirements
	User Requirements (URs)

	
	System Requirements
	Functional Requirements (FRs)
	Non-Functional Requirements (NFRs)
	Constraint Requirements (CRs)

