
Method Selection and Planning

ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan

--------------------------------------------------------------------------------------------------------------------------------------

This document has been modified for Assessment 2 to reflect the changes made by ENG1

Team 6:

● Hussain Alhabib

● Ellen Matthews

● Minnie Poon

● Jason Ruan

● Daniel Smith

● Owen Smith

--------------------------------------------------------------------------------------------------------------------------------------



Method Selection and Planning

Engineering Methods

Engineering Methodology
We chose to use an agile software engineering methodology as this allowed us the most
flexibility as the project is completed and allows for individuals to dynamically contribute to
the progress of the system. The advantages of using agile are quick deployment, emphasis
on collaboration and the ability to adapt to changing requirements. Quick deployment is
important due to the short time scale of the project, collaboration is important to ensure that
skills from all members of the team are being utilised to maximum effect and the ability to
adapt as requirements change is useful as the features that we choose to implement may
change as the project unfolds. The disadvantages of using agile are a smaller emphasis on
testing, smaller emphasis on documentation and risk of burn-out. The smaller emphasis on
testing can be mitigated by focusing on code quality and adhering to style guides and best
practices. Burn-out can be reduced by allocating work based on team strengths, varying
tasks that members do and working in pairs on sprints. These factors make agile the most
suitable methodology for our project.

One of the alternatives that we considered was a waterfall methodology. An advantage of a
waterfall approach is that it is easy to use and manage. It also provides definitive structure to
each phase of the project and a greater level of documentation is required for each phase.
However, changes to requirements cannot be easily accommodated due to the linear nature
of the waterfall model, software development takes a back seat until requirements and
design phases are completed and gathering accurate requirements before any prototypes
have been made can be difficult. These disadvantages lead to waterfall being less suitable
for our project.
------------------------------------------------------------OUR EDITS-----------------------------------------------------------

Once we selected Agile as our chosen methodology, we explored the options and types of Agile - in

particular Scrum and Kanban. Scrum is more suitable for teams new to agile, and ensures team

members have specific roles to enhance productivity and ensure multiple tasks are running in

parallel. Whereas, Kanban is less suited to teams new to agile, and utilises a Kanban board with three

columns; To Do, Doing and Done. After discussing, we settled on Scrum as our chosen type of Agile

Methodology primarily due to its enhanced suitability for teams new to agile, and its Scrum board

which is similar to the Kanban board and organises tasks based on progress - something we like as a

team.

--------------------------------------------------------------------------------------------------------------------------------------

Source Control
GitHub - We chose github for version control as it allows us to remotely collaborate with
each other. It allows individual team members to pull code from a centralised repository to
work on a section of code before pushing it to a side branch to be reviewed and merged with
the main branch of code. This allows for developers to work on code without affecting the



work of the other team members and code can be verified before committing it to the main
branch, saving time by minimising errors in code.

We also use GitHub projects to keep track of progress throughout the development stage.
This allows us to break down large tasks into issues, which can be assigned to individual
team members and integrated with pull requests, which aligns with our agile development
methodology.

An alternative that we considered for source control is Azure. Advantages of Azure are its
integration with the Microsoft ecosystem including the VSCode IDE, which is a popular
choice among developers. However as we are using Google Drive for some of our
documentation and many of our team members are already familiar with GitHub that is the
choice we went with.

Development Environment
We chose to use VSCode and IntelliJ in the implementation of our project. One reason for
this is that both IDEs have support for Java compilation & debugging and version control
through GitHub. IntelliJ has this built-in while VSCode has a selection of extensions that can
be installed. As LibGDX projects generally use their own build scripts, the project itself is
mostly agnostic to the IDE used, meaning group members can use their personal
preference.

Team Communication
When deciding between software for team communication, the two popular options among
our group were Slack and Discord. We chose to use Discord for this project as it is software
every member of the group is familiar with. Additionally, we were able to use webhooks to
create a channel that tracks GitHub activity - this is useful to see at a glance when issues
are created or closed off, and when code reviews have been requested.

------------------------------------------------------------OUR EDITS-----------------------------------------------------------

When deciding our preferred method of team communication, we considered two popular and

industry-leading platforms; Slack and Microsoft Teams. After careful consideration, and analysis of

their features and functionalities when using the free plan, we settled on Slack. We chose Slack over

Microsoft Teams primarily due to its enhanced collaboration abilities including the ability to integrate

Google Drive (our chosen File Management platform) and GitHub (our chosen Version Control

platform) into our teams channels, and the ability to set up separate channels for each deliverable

and other aspects of the project which helped to foster transparency and collaboration.

--------------------------------------------------------------------------------------------------------------------------------------

Frameworks
LibGDX - We chose libGDX as the framework for our game development. It comes with
ample features for developing a 2D game. It is widely used and comes with extensive
documentation, which means we can get started with a simple setup very quickly.
Additionally, LibGDX is Apache 2 licensed, a highly permissive licence that allows the use of
their code for any projects with no fees.



Team Organisation

Project Lead - Bertie
- Coordinating team (Arranging meetings)
- Overseeing that team members are completing their responsibilities
- Manage task board on github so that tasks aren’t left out

Documentation - Henry
- Ensuring code documentation is complete
- Ensuring that documentation will allow new team to take over project
- Create developer README so that developers understand the source code
- Project documentation

Source Control / Project structure - Jacob
- Maintaining the github repo (branching and merging onto main branch)
- Make sure that tasks within the project are not missed
- Code reviews
- Contribute to weekly plans regarding implementation tasks

Writeup - Will
- Making sure the write up is complete
- Summarise team decisions to add to write up
- Proofreading
- Ensure that any methods/programs used have been added to the write up

Quality Assurance - James
- Ensure that code is high quality and readable
- Debugging code
- Ensure that game is fun and engaging
- Document known issues with code

We chose to organise the team in this way to allow for clear definition of responsibilities with
only small overlaps to avoid confusion as to who is responsible for certain tasks. This allows
us to work more efficiently, by reducing time spent on delegating tasks. Roles were chosen
based on our personal interests and skills to maximise participation and mitigate the risk of
burnout. This approach is suitable for developing a small 2D game due to the relatively small
scope of each part of the project, meaning one team member is able to lead each main area.



------------------------------------------------------------OUR EDITS-----------------------------------------------------------

As a team that utilised the Agile methodology for development, we chose a deliverable-based

approach to team organisation. Each team member is assigned as a Lead and is responsible for one

of the six project deliverables. This approach helps to promote ownership and accountability, and

enables each team member to focus on a deliverable that aligns with their expertise or interest -

increasing productivity and enhancing the team’s progress.

To further support the team’s efficiency, we assigned a secondary role to each team member which

addresses various operational needs within the project. Below is an overview of these roles

1. Project Lead: Responsible for overseeing the project’s timeline and ensuring that all

deliverables stay on schedule as per the Gantt Chart. They check in on team members’

progress at the beginning of each meeting and help maintain focus on tasks.

2. Head Developer: Manages code production, coordinates feature integration, and establishes

coding standards and formatting. They ensure that development aligns with the team’s

chosen methodology and oversees the technical aspects of the project.

3. Quality Assurance: Handles testing to ensure the product meets agreed-upon requirements,

assists the Head Developer with identifying and fixing bugs, and ensures the quality of

features within the product.

4. Report Editor: Oversee the finalisation of all written reports and deliverable documents,

ensuring they meet the standards outlined in the assessment brief.

5. Secretary: This role is divided into two different positions:

a. Meeting Secretary: Manages meeting documentation, prepares agenda, and takes

notes. They also organise the team’s working directory to ensure documents are

up-to-date and easy to find.

b. Logistics and Communications Secretary: Coordinates meeting logistics, including

booking rooms and arranging schedules, and manages communication with the

client by relaying project updates and feedback.

Our Team

Hussain Alhabib
Software Testing Lead

Quality Assurance

Ellen Matthews
User Evaluation Lead
Meetings Secretary

Minnie Poon
Change Report Lead

Report Editor

Jason Ruan
Continuous Integration Lead

Project Lead

Daniel Smith
Website Lead

Logistics and Communications
Secretary

Owen Smith
Implementation Lead

Head Developer

Reasoning behind certain roles:

- As the person responsible for Quality Assurance, we felt Hussain would be best suited to be

the Software Testing lead.

- As an aspiring Data Scientist, we felt Ellen should take the lead on the Evaluation section.

- As the person most familiar with LibGDX and Game Development, we felt Owen should take

the lead on everything coding related.

--------------------------------------------------------------------------------------------------------------------------------------



Plan for Key Tasks and Deadlines

Note: Task - priority (Assignee)

Research Deliverables - High (All)
It is necessary for all members of the group to understand the deliverables to ensure that
everyone is able to complete their sections correctly.
Plan Client Meeting - Medium (All)
Dependencies: Research Deliverables
The client meeting is to be planned to ensure that we use the time effectively and are able to
elicit requirements from the client.
Start Risk Writeup - Medium (William)
Dependencies: Research Deliverables, Plan Client Meeting
The risk writeup will allow us to mitigate risk of failure throughout the project so that we
ensure our success
Client Meeting - High (James)
Dependencies: Client Meeting Plan
The client meeting provides clarification on any confusions we had on the requirements and
make sure whether a feature is necessary
Elicit Requirements - High (Will)
Dependencies: Client Meeting
Requirements write up allow us to manage requirements made by the clients thoroughly. As
every demand is described in detail and assigned a priority, it allows us to easily plan and
assign requirements to different teammates based on their strengths and preferences.
Start Architecture Design - High (Jacob & Bertie)
Dependencies: Elicit Requirements
The architecture plan allows us to decide on the themes of the game and the basic structure
of the code. We focused on constructing a modulable structure as it provides easy
modifications of codes and features, and allows team members to work on different parts of
the code without a thorough knowledge of unrelated sections.



Create initial architecture diagram - High (Bertie)
Dependencies: Start Architecture Design
This will help us start work on implementation as if we don’t have an architecture diagram we
do not know how each class of our project should interact with each other. Without this,
classes written by different members may not interact correctly.

Map implementation - High (Jacob & Bertie)
Dependencies: Create initial architecture diagram
The map will be made first as it is fundamental to the game and will contain all other entities
that are added to the map.
Menu Implementation - High (Henry)
Dependencies: Map Implementation
The menu will be made after the map so that it is able to call for the map to be rendered
once the play button is pressed
Method Selection & Planning - (James)
Dependencies: Elicit Requirements, Menu Implementation, Map Implementation
The method selection and planning stage of the write up will be left until the end of the
project as we will be using github projects and google drive to keep track of team efforts
Complete Risks Write Up - High (Will)
Dependencies: Start risk write up
The risk writeup is to be completed at the end of the project as we want to be able to update
the risk assessment if any issues come to light which were not previously anticipated.
Finish Architecture Write Up - High (Bertie)
Dependencies: Create initial architecture diagram
The architecture writeup will be completed at the end of the project as there may be tweaks
made to method use and the way in which different classes may interact with each other.

Note: Due to the nature of these tasks and progress being dependent on completion of
previous tasks, priorities are relatively high for all of these key tasks.

WEEKLY PLANS

How the plan changed throughout the project

Around 1 week into the implementation phase, Bertie joined the implementation side of the
project to assist with writing the rendering code due to having previous experience with
similar projects. This enabled us to move forward more quickly with development, meaning
we would have sufficient time to prioritise code quality & documentation towards the end of
the project. This led to Will taking over some of the writeup roles, particularly on the risks
section to compensate for Bertie spending more time on implementation.

Overall, our efforts shifted towards implementation as the project progressed, with the most
combined focus being towards the middle of the project - around weeks 4-5 and into
Consolidation Week. It became clear that implementation would require significant effort to
build a high quality product that can be easily extended and developed later. Towards the
end of the project, Jacob took on a more supervisory role relating to development, with a
particular focus on ensuring our code is compliant with javadoc conventions and the Google
style guide.

https://jd760.github.io/Team9-UniSim/weekly-plans.html


------------------------------------------------------------OUR EDITS-----------------------------------------------------------

Figure: A screenshot of our Gantt Chart for Assessment 2 taken during Week 10.

Similar to Assessment 1, we utilised a Gantt Chart, the style and design of which can be seen above.

Our chosen structure allowed us to ensure task transparency and ownership of tasks whilst also

giving a clear timeline for the project to the team’s members.

--------------------------------------------------------------------------------------------------------------------------------------


