Requirements
ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan

Introduction to Requirements

To begin eliciting the requirements we first analysed the product brief, which provided us
with some initial fundamental requirements of the game.

We also noted down any remaining questions we had around the product brief, and then
created a list of important questions to ask the stakeholder, ordered by priority. These were
questions such as the role of sound effects in our game or guidance on the art style/theme
we should choose.

Additionally we did some further research into sensible system requirements for the game
(e.g system specs and supported 0S’s). From this, we found that devices with at least 2GB
of RAM and 2 or more CPU cores should be sufficient for a simple 2D game.

Next we set up a meeting with the client to discuss the questions we had curated. In doing
so we gathered and negotiated new requirements and cleared up any ambiguity in the
requirements we had already gathered.

The client also noted that we had a lot of freedom to decide how some of the lower level
design elements of the game worked, along with the style/theme of the game. This reduced
the number of requirements relating to the style and design of the game.

During the meeting we also worked with the client to come up with a SSON which will help
the whole team understand the broad concept of the game.

Single Statement of Need (SSON)

The system will consist of a campus planning game, which allows the user to place
buildings, and simulates an in-game time of 3 years within 5 minutes of real world time.

After collecting the requirements we needed a way to present them in a way that was easy to
edit and reference. To accomplish this we created tables to house the requirements. Firstly
we made a user requirements table which holds all the requirements that were obtained
from the meeting with the client. These user requirements were written in a non-technical
way which allows for anyone involved in the project to understand their meaning and have a
corresponding priority of either shall, should or may - this provides a clear indication of the
priority assigned to a given requirement.

Next we made 3 tables for system requirements: functional, non-functional and constraint.
The functional and non-functional requirements were determined by examining the user
requirements and then creating descriptions of how the system will satisfy these
requirements. Functional is for things a system should do and non-functional is for qualities
a system should have. The constraint requirements were determined from the initial
research we did into sensible system requirements before the meeting.

Every requirement in each table has a description of what the requirement is and also an ID.
The ID is a meaningful name (for example UR_BUILDING_COUNTER) which is prefixed with
either: UR, FR, NFR, or CR which correspond to: User, Functional, Non-functional and
Constraint requirement. This allows for easy identification of what type of requirement the ID
corresponds to but also allows for easy referencing in other areas of the project.

UR_CAMPUS_CREATION

User Requirements

The user shall be able to create their own university on a provided map which
includes obstacles where buildings cannot be built.

Shall

UR_BUILDING_VARIETY

The user shall have a number of different building types to choose from. The
variety of buildings should include at least: one place to sleep, one place to learn,
one place to eat, and one for recreational activities.

Users may also be able to upgrade their buildings.

Shall

UR_EVENTS

The user shall be able to interact and react to events that occur during the course
of the game, these depend on the difficulty setting chosen by the user.

May

UR_STUDENT_SATISFACTION

The user can increase or decrease the satisfaction levels of the students in a
variety of ways (for example having entertainment and food buildings near
accommodation, and reacting to events appropriately).

May

UR_GAME_PROGRESS

The game should simulate a time of around 3 years within a time frame of 5
minutes. And have a counter on the screen that displays how much time is left.
When the timer stops the game should end.

Shall

UR_IMMERSION

The game should be immersive for the player.
Meaning that sounds and graphics should match the theme of the game.

Should

UR_TARGET_MARKET

The game should be suitable to be played by 16-20 year old students, or people
who want to be students.

Should

UR_DIFFICULTY_SETTINGS

The game may contain multiple difficulty settings that the user can choose from.
These settings should affect different parts of the game (for example increase
the frequency and difficulty of events and change the amount of money you start
with).

The default setting should be the easiest which helps with accessibility for new
users.

May

UR_PERFORMANCE

The game should perform well on the minimum spec machines and provide a
pleasant user experience.

Shall

UR_INTUITION

The game should be intuitive to play at the fundamental level, for example, it
should be straightforward to select/place buildings and deal with events. The
game should stay intuitive for users with no gaming experience.

Also the game should react to the users inputs.

Should

UR_BUILDING_COUNTER

The game shall have a counter denoting how many of each type of building have
been placed so far.

Shall

UR_MONEY

The game may include an in-game currency system that is used to purchase
buildings. The income rate of this currency should increase accordingly with
student satisfaction.

May

UR_MAINTAINABILITY

The game should be easily modified and maintained by future developers

Shall

System Requirements

Functional Requirements

FR_TIME_LIMIT When the time left on the game timer is less than or equal to 0 seconds the | UR_GAME_PROGRESS
game must end, stopping the user from doing any more actions and
displaying their student satisfaction score.
FR_MAP The game shall provide a visual campus map for the user. UR_CAMPUS_CREATION
FR_BUILDING The game shall allow users to place/build and possibly upgrade buildings UR_CAMPUS_CREATION

on the campus map. The time for buildings to build or upgrade should be
dependent on the type of building and the difficulty setting.

UR_DIFFICULTY_SETTINGS
UR_BUILDING_VARIETY

FR_BUILDING_TYPES

The game shall have at least one building of every type namely: Educational,
Recreational, Residential and Eatery.

UR_BUILDING_VARIETY

FR_SATISFACTION_BU
ILDINGS

The number of each building type shall increase satisfaction.
The closer each type of building is to another type of building should also
increase satisfaction.

UR_STUDENT_SATISFACTI
ON

FR_OBSTACLES

The map shall have preplaced obstacles that block the user from building
on top of them.

UR_CAMPUS_CREATION

FR_EVENT_TYPES Events should come in 3 different types: positive(Which benefits the player), | UR_EVENTS
negative(Which hinders the player) and neutral(Which does not affect the
game)

FR_EVENT_VARIETY Events should occur throughout the game - these should cover a wide UR_EVENTS

variety of events and consequences.
These events will be set and occur at set times on the lowest difficulty but
be randomised on higher difficulties.

UR_DIFFICULTY_SETTINGS

FR_DIFFICULTY_SELEC
TION

The game shall allow the user to select the difficulty of a new game. The
default should be the easiest setting.

UR_DIFFICULTY_SETTINGS
UR_INTUITION

FR_DIFFICULTY_EFFEC
TS

The difficulty selected should affect the variety, frequency of events along
with the time to build and upgrade buildings.

UR_DIFFICULTY_SETTINGS

FR_TIMER

The game should have a timer that is displayed at all times during gameplay,
showing the remaining time from the original 5 minutes.

UR_GAME_PROGRESS

FR_BUILDING_COUNT
ER

The game should display a counter at all times during gameplay that shows
how many of each building type have been placed in the world.

UR_BUILDING_COUNTER

FR_USER_INTERFACE [The Ul should display only important information to the user so that itis not [UR_LINTUITION
overly complex and overwhelming.

FR_INTERACTIVE_ELE | Interactive elements should react when clicked or moved (for example when | UR_INTUITION

MENTS a button is pressed its colour changes or a sound is made).

FR_MONEY Players should start with a predetermined amount of money based on UR_MONEY
difficulty and receive an income which increases proportionally to the UR_DIFFICULTY_SETTINGS
student satisfaction level.

FR_BUYING The game should allow users to spend their in-game money on purchasing UR_MONEY

and upgrading buildings and never allow users to purchase or upgrade a
building if they do not have enough in-game money.

Non-functional Requirements

NFR_ERROR_MESSAGES

Any errors or warnings generated by
the game should be easy to
understand and not overly technical

UR_MAINTAINABILIT
Y

The error messages should be
understood by users who have no
knowledge of the code.

NFR_PERFORMANCE

The game should run smoothly, at a
framerate around 60, without hitches
at any point during gameplay.

This should apply on minimum spec
machines.

UR_PERFORMANCE

The 60-second average frame-rate
should exceed 58. The lowest 1%
of frame times should also be
above 50.

NFR_INTERACTIVE_ELEMEN | Interactive elements (for example UR_INTUITION Interactive elements must react
TS_REACTION buttons) should react quickly to user within <1 second

use. Preferably with some signal to the

user like a sound or colour change.
NFR_OPERABILITY The game should be easily playable UR_INTUITION A new player shall be comfortable

and navigable by new players.

with the game after around 2
minutes of use.

NFR_DOCUMENTATION

The game should come with clear
documentation that explains what
each part of the code does and how to
modify it.

UR_MAINTAINABILIT
Y

The documentation should be
understood by users who have no
prior knowledge of the code.

NFR_END_OF_GAME

The game should immediately end
after the timer has expired.

UR_GAME_PROGRES
S

The game should end and block
any further user actions within <1
after the timer stops.

NFR_IMMERSION

The game should have sounds and
graphics that fit the theme of the
game.

UR_IMMERSION

Sounds and graphics shall fit the
tone of the game and not take
away from the immersion of the
user or stick out against the rest
of the game.

NFR_THEME

The theme of the game should appeal
to a 16-20 year old student audience.

UR_TARGET_MARKE
T

The theme should be something a
16-20 year old will relate to and be
interested in.

NFR_CODE_MODULARITY

The code should be modular and easily
extendable, without making the
program difficult to follow.

UR_MAINTAINABILIT
Y

Classes should hold references to
necessary related objects and no
more.

Constraint Requirements

CR_SYSTEM_COMPATIBILITY

The game must successfully build for Windows, macOS and Linux.

CR_MINIMUM_SPEC

CPU.

The game shall run on 64-bit desktop computers with a minimum of 2GB RAM and a dual core

